
Page 1 of 9

King Fahd University of Petroleum & Minerals
College of Computer Science and Engineering

Information and Computer Science Department
First Semester 181 (2018/2019)

ICS 202 – Data Structures

Major Exam 2
Sunday, November 4th, 2018

Time: 90 minutes

Name: ________________KEY_________________

Section 01
Dr. Sami

Question # Max Marks

Marks
Obtained

1 20

2 20

Section 02
Dr. Irfan

3 30

4 30

Total 100

Instructions

1. Write your name and ID in the respective boxes above and circle your section.

2. This exam consists of 8 pages, including this page and a “Quick Reference Sheet” at the end.

3. This exam consists of 4 questions. You have to answer all the 4 questions.

4. The exam is closed book and closed notes. No calculators or any helping aids are allowed.

5. Make sure you turn off your mobile phone and keep it in your pocket if you have one.

6. The questions are not equally weighed.

7. The maximum number of points for this exam is 100.

8. You have exactly 90 minutes to finish the exam.

9. Make sure your answers are readable.

10. If there is no space on the front of the page, feel free to use the back of the page. Make sure you

indicate this in order not to miss grading it.

ID#

Page 2 of 9

Q.1 (20 points) [Stacks and Queues]:

(a) [10 points] Consider the Java predefined class Stack (java.util.Stack). Write the code of a new

method in that class called reverse which reverses the content of the current stack (this). That is,

after the call to reverse the elements at the top of the stack will be on the bottom, etc. You can

use any other method in the Stack class (see reminder sheet at the end of the exam).

public void reverse()

 {

 Stack<T> stack1 = new Stack<T>();

 while (!this.isEmpty())

 stack1.push(this.pop());

 Stack<T> stack2 = new Stack<T>();

 while (!stack1.isEmpty())

 stack2.push(stack1.pop());

 while(!stack2.isEmpty())

 this.push(stack2.pop());

 }

 (b) (10 points) Consider the following postfix expression:

10 3 * 5 7 − 4 / 11 2 * + +

(i) [7 points] Evaluate the postfix expression using a stack. Show the contents of the stack

after each operation.

(ii) [3 points] Show the unambiguous infix equivalent of the above expression (you can use

parentheses).

(10*3) + ((5-7)/4) + (11*2)

Page 3 of 9

Q2. (20 points) Recursion and Analysis of Recursion

(a) [10 points] Write a recursive method to count the number of leaves in a binary search tree. The

method should return the count as an integer.

public void countLeaves(BSTNode<T> n){

 if (n == null)

return 0;

if(n.left == null && n.right== null)

return 1;

return countLeaves(n.left) + countLeaves(n.right);

}

(b) [10 points] Write a recurrence relation for the following code fragments. Represent the time

complexity T(n) of this method in terms of n. Solve the recurrence relation, what is the Big-Oh

complexity of the method? You can assume n to a power of 2. Hint: Base the recurrence on

counting the additions.

int mystery(int n) {

 if(n==1)

 return n;

 return mystery(n/2) + mystery(n/2);

}

T(n) = 0 for n =1

T(n) = 2T(n/2) + 1 for n>1

=4T(n/4) + 3

=2kT(n/2k) + 2k-1

2k = n; k = log2n

2kT(n/2k) + 2k-1 = 0 + 2log
2

n – 1 = n-1

O(n)

Page 4 of 9

Q.3 (30 points) Expression Trees and Heaps

(a) [12 points] Represent the following infix expression as an expression tree. Convert the

expression into prefix and postfix form using the traversals on the expression tree.

((3-3)*(5+4)-(6*(8-3)+(9/5)))

Expression tree:

Prefix expression:

- * - 3 3 + 5 4 + * 6 – 8 3 / 9 5

Postfix expression:

3 3 – 5 4 + * 6 8 3 - * 9 5 / + -

(b) [6 points] For the following min-heap, show the resultant min-heap after deleting element 21.

Figure 1: Solution

Page 5 of 9

(c) [12 points] Create an min-heap for the following array elements using the bottom-up approach

(Floyd’s algorithm). Show the steps by drawing the heap at every step. Note: The heap at every

step will not necessarily be a valid min-heap but it should finally become a valid min-heap.

Input Array: 9 5 3 8 7 10 11 15 6 4 2 1

Page 6 of 9

Q.4 (30 points) [Balanced and AVL Trees]

(a) [15 points] Apply the DSW Algorithm on the following binary search tree. Show the tree

after the first step (CreateBackbone) and then in its final state (after CreatePerfectTree)

15

10

20

30

25

5 35

45

40

50

Page 7 of 9

Page 8 of 9

(b) (15 points) Insert these keys into an empty AVL-tree: 2, 5, 4, 9, 10, 12, 11

Quick Reference Sheet

Page 9 of 9

public class Stack<T> {

 private …; // array or linked list

 public Stack();

 public Stack(int n);

 public void clear();

 public boolean isEmpty();

 public T topEl();

 public T pop();

 public void push(T el);

 public String toString();

}

public class Queue<T> {

 private …; // array or linked list

 public Queue();

 public void clear();

 public boolean isEmpty();

 public T firstEl();

 public T dequeue();

 public void enqueue(T el);

 public String toString();

}

